Imprecision and DNA Break Repair Biased towards Incompatible End Joining in Leukemia.

نویسندگان

  • Franz Josef Gassner
  • Maria Schubert
  • Stefan Rebhandl
  • Karina Spandl
  • Nadja Zaborsky
  • Kemal Catakovic
  • Stephanie Blaimer
  • Daniel Hebenstreit
  • Richard Greil
  • Roland Geisberger
چکیده

Cancer is a genetic disease caused by mutations and chromosomal abnormalities that contribute to uncontrolled cell growth. In addition, cancer cells can rapidly respond to conventional and targeted therapies by accumulating novel and often specific genetic lesions leading to acquired drug resistance and relapsing disease. In chronic lymphocytic leukemia (CLL), however, diverse chromosomal aberrations often occur. In many cases, improper repair of DNA double-strand breaks (DSB) is a major source for genomic abnormalities. Therefore, this study examined the repair of DNA DSBs by nonhomologous end joining (NHEJ) in CLL by performing plasmid-based repair assays in primary CLL cells and normal B cells, isolated from patients, as well as TALEN/Cas9-induced chromosomal deletions in the CLL cell line Mec1. It is demonstrated that DNA repair is aberrant in CLL cells, featuring perturbed DNA break structure preference with efficient joining of noncohesive ends and more deletions at repair junctions. In addition, increased microhomology-mediated end joining (MMEJ) of DNA substrates was observed in CLL together with increased expression of MMEJ-specific repair factors. In summary, these data identify major differences in DNA repair efficiency between CLL cells and normal B cells isolated from patients.Implications: This study suggests inherently aberrant DNA DSB repair in the acquisition of subclonal genomic structural variations important for clonal evolution and treatment resistance in CLL. Mol Cancer Res; 16(3); 428-38. ©2017 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential Factors for Incompatible DNA End Joining at Chromosomal DNA Double Strand Breaks In Vivo

Non-homologous end joining (NHEJ) is a major pathway for the repair of DNA double strand break (DSBs) with incompatible DNA ends, which are often generated by ionizing irradiation. In vitro reconstitution studies have indicated that NHEJ of incompatible DNA ends requires not only the core steps of synapsis and ligation, employing KU80/DNA-PKcs and LIG4, but also additional DNA end processing st...

متن کامل

Number : MOLECULAR - CELL - D - 10 - 00462 R 3 Title : PARP - 3 and APLF Function Together to Accelerate Non - Homologous End Joining

PARP-3 is a member of the ADP-ribosyl transferase super-family of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA doublestrand break repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the ret...

متن کامل

Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence

The double-strand DNA break repair pathway, non-homologous DNA end joining (NHEJ), is distinctive for the flexibility of its nuclease, polymerase and ligase activities. Here we find that the joining of ends by XRCC4-ligase IV is markedly influenced by the terminal sequence, and a steric hindrance model can account for this. XLF (Cernunnos) stimulates the joining of both incompatible DNA ends an...

متن کامل

DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining.

In human cells DNA double strand breaks (DSBs) can be repaired by the non-homologous end-joining (NHEJ) pathway. In a background of NHEJ deficiency, DSBs with mismatched ends can be joined by an error-prone mechanism involving joining between regions of nucleotide microhomology. The majority of joins formed from a DSB with partially incompatible 3' overhangs by cell-free extracts from human gli...

متن کامل

Double strand break repair.

DNA double-strand breaks (DSBs) are the most dangerous form of DNA damage and can lead to death, mutation, or malignant transformation. Mammalian cells use three major pathways to repair DSBs: homologous recombination (HR), classical nonhomologous end joining (C-NHEJ), and alternative end joining (A-NHEJ). Cells choose among the pathways by interactions of the pathways with CtIP and 53BP1. HR i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2018